44 research outputs found

    A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Get PDF
    Wind power plant (WPP), photovoltaic generators (PV), cell-gas turbine (CGT), and pumped storage power station (PHSP) are integrated into multienergy hybrid system (MEHS). Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time

    A Joint Scheduling Optimization Model for Wind Power and Energy Storage Systems considering Carbon Emissions Trading and Demand Response

    Get PDF
    To reduce the influence of wind power random on system operation, energy storage systems (ESSs) and demand response (DR) are introduced to the traditional scheduling model of wind power and thermal power with carbon emission trading (CET). Firstly, a joint optimization scheduling model for wind power, thermal power, and ESSs is constructed. Secondly, DR and CET are integrated into the joint scheduling model. Finally, 10 thermal power units, a wind farm with 2800 MW of installed capacity, and 3×80 MW ESSs are taken as the simulation system for verifying the proposed models. The results show backup service for integrating wind power into the grid is provided by ESSs based on their charge-discharge characteristics. However, system profit reduces due to ESSs’ high cost. Demand responses smooth the load curve, increase profit from power generation, and expand the wind power integration space. After introducing CET, the generation cost of thermal power units and the generation of wind power are both increased; however, the positive effect of DR on the system profit is also weakened. The simulation results reach the optimum when both DR and CET are introduced

    Efficiency Evaluation for Smart Grid Management Based on Stochastic Frontier Model and Data Envelope Analyses Model

    Get PDF
    For the technical and allocative efficiency evaluation of smart grid, this paper has proposed two methods. One is based on Data Envelopment Analysis and another is based on Stochastic Frontier Model. Among them, the former considered the dynamics of smart grid development and development dynamics is the influence parameter. The latter analyzed self-duality between the Cobb-Douglas production function and cost function; then, it deduced the smart grid resources optimization allocative efficiency evaluation model which can avoid price information needs of input factor in conventional allocative efficiency evaluation. The validity and rationality of the two methods are verified by a case study

    Robust optimal dispatching model and a benefit allocation strategy for rural novel virtual power plants incorporating biomass waste energy conversion and carbon cycle utilization

    Get PDF
    To optimize the utilization of rural biomass waste resources (e.g., straw and solid waste), biomass waste energy conversion (BWEC) and carbon cycle utilization (CCU) are integrated into a traditional virtual power plant, i.e., a rural BWEC-CCU-based virtual power plant. Furthermore, a fuzzy robust two-stage dispatching optimal model for the BWEC-CCU-based virtual power plant is established considering the non-determinacy from a wind power plant (WPP) and photovoltaic (PV) power. The scheduling model includes the day-ahead deterministic dispatching model and real-time uncertainty dispatching model. Among them, in the day-ahead dispatching phase, the dispatching plan is formulated with minimum operating cost and carbon emission targets. In the real-time dispatching phase, the optimal dispatching strategy is formulated aiming at minimum deviation adjustment cost by applying the Latin hypercube sampling method. The robust stochastic theory is used to describe the uncertainty. Third, in order to achieve optimal distribution of multi-agent cooperation benefits, a benefit distribution strategy based on Nash negotiation is designed considering the three-dimensional interfering factor of the marginal benefit contribution, carbon emission contribution, and deviation risk. Finally, a rural distribution network in Jiangsu province, China, is selected for case analysis, and the results show that 1) the synergistic optimal effect of BWEC and CCU is obvious, and the operation cost and deviation adjustment cost could decrease by 26.21% and 39.78%, respectively. While the capacity ratio of WPP + PV, BWEC, and CCU is 5:3:2, the dispatching scheme is optimum. 2) This scheduling model can be used to formulate the optimal scheduling scheme. Compared with the robust coefficient Γ = 0, when Γ = 1, the WPP and PV output decreased by 15.72% and 15.12%, and the output of BWEC and CCU increased by 30.7% and 188.19%, respectively. When Γ∈ (0.3, 0.9), the growth of Γ has the most direct impact on the dispatching scheme. 3) The proposed benefit equilibrium allocation strategy can formulate the most reasonable benefit allocation plan. Compared with the traditional benefit allocation strategy, when the proposed method is used, the benefit share of the WPP and PV reduces by 5.2%, and the benefit share of a small hydropower station, BWEC, and CCU increases by 1.7%, 9.7%, and 3.8%, respectively. Overall, the proposed optimal dispatching and benefit allocation strategy could improve the aggregated utilization of rural biomass waste resources and distributed energy resources while balancing the benefit appeal of different agents

    Ventricular flow analysis and its association with exertional capacity in repaired tetralogy of Fallot: 4D flow cardiovascular magnetic resonance study

    Get PDF
    Background: Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows quantification of biventricular blood flow by flow components and kinetic energy (KE) analyses. However, it remains unclear whether 4D flow parameters can predict cardiopulmonary exercise testing (CPET) as a clinical outcome in repaired tetralogy of Fallot (rTOF). Current study aimed to (1) compare 4D flow CMR parameters in rTOF with age- and gender-matched healthy controls, (2) investigate associations of 4D flow parameters with functional and volumetric right ventricular (RV) remodelling markers, and CPET outcome. Methods: Sixty-three rTOF patients (14 paediatric, 49 adult; 30 ± 15 years; 29 M) and 63 age- and gender-matched healthy controls (14 paediatric, 49 adult; 31 ± 15 years) were prospectively recruited at four centers. All underwent cine and 4D flow CMR, and all adults performed standardized CPET same day or within one week of CMR. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes. Four flow components were analyzed: direct flow, retained inflow, delayed ejection flow and residual volume. Additionally, three phasic KE parameters normalized to end-diastolic volume (KEi EDV), were analyzed for both LV and RV: peak systolic, average systolic and peak E-wave. Results: In comparisons of rTOF vs. healthy controls, median LV retained inflow (18% vs. 16%, P = 0.005) and median peak E-wave KEi EDV (34.9 µJ/ml vs. 29.2 µJ/ml, P = 0.006) were higher in rTOF; median RV direct flow was lower in rTOF (25% vs. 35%, P < 0.001); median RV delayed ejection flow (21% vs. 17%, P < 0.001) and residual volume (39% vs. 31%, P < 0.001) were both greater in rTOF. RV KEi EDV parameters were all higher in rTOF than healthy controls (all P < 0.001). On multivariate analysis, RV direct flow was an independent predictor of RV function and CPET outcome. RV direct flow and RV peak E-wave KEi EDV were independent predictors of RV remodelling index. Conclusions: In this multi-scanner multicenter 4D flow CMR study, reduced RV direct flow was independently associated with RV dysfunction, remodelling and, to a lesser extent, exercise intolerance in rTOF patients. This supports its utility as an imaging parameter for monitoring disease progression and therapeutic response in rTOF. Clinical Trial Registrationhttps://www.clinicaltrials.gov. Unique identifier: NCT03217240

    Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization

    No full text
    To promote the utilization of distributed resources, this paper proposes a concept of a micro energy system (MES) and its core structure with energy production, conversion, and storage devices. In addition, the effect of demand&ndash;response on the operation of a MES is studied. Firstly, based on uncertainties of a MES, a probability distribution model is introduced. Secondly, with the objectives of maximizing operating revenue, and minimizing operational risk and carbon emissions, a multi-objective coordinated dispatching optimization model was constructed. To solve this model, this paper linearizes objective functions and constraints via fuzzy satisfaction theory, then establishes the input&ndash;output matrix of the model and calculates the optimal weight coefficients of different objective functions via the rough set method. Next, a comprehensive dispatching optimization model was built. Finally, data from a MES in Longgang commercial park, Shenzhen City, were introduced for a case study, and the results show that: (1) A MES can integrate different types of energy, such as wind, photovoltaics, and gas. A multi-energy cycle is achieved via energy conversion and storage devices, and different energy demands are satisfied. Demand&ndash;response from users in a MES achieves the optimization of source&ndash;load interaction. (2) The proposed model gives consideration to the multi-objectives of operating revenue, operational risk, and carbon emissions, and its optimal strategy is obtained by using the proposed solution algorithm. (3) Sensitivity analysis results showed that risks can be avoided, to varying degrees, via reasonable setting of confidence. Price-based demand&ndash;response and maximum total emission allowances can be used as indirect factors to influence the energy supply structure of a MES. In summary, the proposed model and solution algorithm are effective tools for different decision makers to conceive of dispatching strategies for different interests

    Multiobjective Synergistic Scheduling Optimization Model for Wind Power and Plug-In Hybrid Electric Vehicles under Different Grid-Connected Modes

    No full text
    In order to promote grid’s wind power absorptive capacity and to overcome the adverse impacts of wind power on the stable operation of power system, this paper establishes benefit contrastive analysis models of wind power and plug-in hybrid electric vehicles (PHEVs) under the optimization goal of minimum coal consumption and pollutant emission considering multigrid connected modes. Then, a two-step adaptive solving algorithm is put forward to get the optimal system operation scheme with the highest membership degree based on the improved ε constraints method and fuzzy decision theory. Thirdly, the IEEE36 nodes 10-unit system is used as the simulation system. Finally, the sensitive analysis for PHEV’s grid connected number is made. The result shows the proposed algorithm is feasible and effective to solve the model. PHEV’s grid connection could achieve load shifting effect and promote wind power grid connection. Especially, the optimization goals reach the optimum in fully optimal charging mode. As PHEV’s number increases, both abandoned wind and thermal power generation cost would decrease and the peak and valley difference of load curve would gradually be reduced

    A Robust Scheduling Optimization Model for an Integrated Energy System with P2G Based on Improved CVaR

    No full text
    The uncertainty of wind power and photoelectric power output will cause fluctuations in system frequency and power quality. To ensure the stable operation of the power system, a comprehensive scheduling optimization model for the electricity-to-gas integrated energy system is proposed. Power-to-gas (P2G) technology enhances the flexibility of the integrated energy system and the power system in absorbing renewable energy. In this context, firstly, an electricity-to-gas optimization scheduling model is proposed, and the improved Conditional Value at Risk (CVaR) is proposed to deal with the uncertainty of wind power and photoelectric power output. Secondly, taking the integrated energy system with the P2G operating cost and the carbon emission cost as the objective function, an optimal scheduling model of the multi-energy system is solved by the A Mathematical Programming Language (AMPL) solver. Finally, the results of the example illustrate the optimal multi-energy system scheduling model and analyze the economic benefits of the P2G technology to improve the system to absorb wind power and photovoltaic power. The simulation calculation of the proposed model demonstrates the necessity of taking into account the operating cost of the electrical gas conversion in the integrated energy system, and the feasibility of considering the economic and wind power acceptance capabilities
    corecore